Difference between revisions of "Tworzenie klas pochodnych: port programu SciMark2"

From MorphOS Library

(Methods and Attributes: Translation in progress.)
(Metody i atrybuty: Translation in progress.)
Line 40: Line 40:
 
Zaprojektowany właśnie intefrejs graficzny do SciMarka definiuje 6 akcji, jakie można wykonać w tym programie. Mamy pięć akcji polegających na wykonaniu pojedynczego testu, oraz szóstą, która wykonuje wszystkie testy po kolei i oblicza łączny wynik. Akcje te będą bezpośrednio odpowiadały metodom klasy utworzonej z klasy ''Application''. GUI określa nam także jeden atrybut, związany z przyciskiem ''LargeData''. Przypomnę, że określa on rozmiary danych dla testów. Ponieważ metody nie wymagają żadnych parametrów, nie ma potrzeby definiowania ich struktur. Jakikolwiek atrybut może być używany jako wartość początkowa konstruktora, może być ustawialny (wymaga [[Przeciążanie metody OM_SET()|przeciążenia metody OM_SET()]]), może też być odczytywalny (wymaga [[Przeciążanie metody OM_GET()|przeciążenia metody OM_GET()]]). Nasz nowy atrybut, nazwany ''APPA_LargeData'', wymaga jedynie możliwości ustawiania. W konstruktorze możemy go domyślnie ustawić na ''FALSE'', ponieważ na starcie programu przycisk "LargeData" jest wyłączony. Możliwość odczytu wartości atrybutu nie jest potrzebna, bo jest on odczytywany wyłącznie wenątrz klasy aplikacji, można więc bezpośrednio odwołać się do odpowiedniego pola danych obiektu.
 
Zaprojektowany właśnie intefrejs graficzny do SciMarka definiuje 6 akcji, jakie można wykonać w tym programie. Mamy pięć akcji polegających na wykonaniu pojedynczego testu, oraz szóstą, która wykonuje wszystkie testy po kolei i oblicza łączny wynik. Akcje te będą bezpośrednio odpowiadały metodom klasy utworzonej z klasy ''Application''. GUI określa nam także jeden atrybut, związany z przyciskiem ''LargeData''. Przypomnę, że określa on rozmiary danych dla testów. Ponieważ metody nie wymagają żadnych parametrów, nie ma potrzeby definiowania ich struktur. Jakikolwiek atrybut może być używany jako wartość początkowa konstruktora, może być ustawialny (wymaga [[Przeciążanie metody OM_SET()|przeciążenia metody OM_SET()]]), może też być odczytywalny (wymaga [[Przeciążanie metody OM_GET()|przeciążenia metody OM_GET()]]). Nasz nowy atrybut, nazwany ''APPA_LargeData'', wymaga jedynie możliwości ustawiania. W konstruktorze możemy go domyślnie ustawić na ''FALSE'', ponieważ na starcie programu przycisk "LargeData" jest wyłączony. Możliwość odczytu wartości atrybutu nie jest potrzebna, bo jest on odczytywany wyłącznie wenątrz klasy aplikacji, można więc bezpośrednio odwołać się do odpowiedniego pola danych obiektu.
  
Pisząc program warto umieszczać każdą klasę w oddzielnym pliku. Ułatwia to utrzymanie modułowości kodu, pozwala również na [[Rzut oka na BOOPSI#Klasy|ukrycie danych prywatnych klasy]].  
+
Pisząc program warto umieszczać każdą klasę w oddzielnym pliku. Ułatwia to utrzymanie modułowości kodu, pozwala również na [[Rzut oka na BOOPSI#Klasy|ukrycie danych prywatnych klasy]]. Pociąga to sa sobą konieczność napisania ''makefile'', ale oryginalny kod SciMarka również składa się z kilku pilków, więc tak, czy inaczej, jest to nieuniknione. Stosując się do przedstawionych powyżej wskazówek projektowych można napisać [http://krashan.ppa.pl/morphzone_tutorials/scimark2_application.h plik nagłówkowy] klasy i jej [http://krashan.ppa.pl/morphzone_tutorials/scimark2_application.c kod]. Klasa w tej postaci nadal nic nie robi, po prostu zawiera puste metody akcji programu i przeciąża metody ''[[Przeciążanie metody OM_SET()|OM_SET()]]'', ''[[Przeciążanie konstruktorów|OM_NEW()]]'' i ''[[Przeciążanie destruktorów|OM_DISPOSE()]]''. Pisanie takiego szkieletu klasy jest nudną mechaniczną pracą, więc można ją zwalić na komputer. W istocie, przykładowy kod został wygenerowany narzędziem  [http://downloads.morphzone.org/find.php?find=chocolatecastle ChocolateCastle]. Niestety ChocolateCastle jest wciąż w wersji beta, więc kilka drobnych poprawek trzeba było wprowadzić ręcznie.
 
 
This requires writing a makefile, but one is needed anyway, as the original SciMark code consists of multiple files. Implementing the design directions discussed above a [http://krashan.ppa.pl/morphzone_tutorials/scimark2_application.h class header file] and [http://krashan.ppa.pl/morphzone_tutorials/scimark2_application.c class code] can be written. The class still does nothing, just implements six empty methods and overrides ''[[Overriding OM_SET()|OM_SET()]]'', ''[[Overriding Constructors|OM_NEW()]]'' and ''[[Overriding Destructors|OM_DISPOSE()]]''. In fact it is a boring template example and as such it has been generated with the [http://downloads.morphzone.org/find.php?find=chocolatecastle ChocolateCastle] template generator. Unfortunately ChocolateCastle is still beta, so files had to be tweaked manually after generation.
 
  
 
The next step in the application design is to connect methods and attributes with GUI elements using [[Event Driven Programming, Notifications#Notifications in MUI|notifications]]. Notifications must of course be created after both source and target object are created. In the SciMark code they are just set up after executing ''build_gui()''. All the six action buttons have very similar notifications, so only one is shown here:
 
The next step in the application design is to connect methods and attributes with GUI elements using [[Event Driven Programming, Notifications#Notifications in MUI|notifications]]. Notifications must of course be created after both source and target object are created. In the SciMark code they are just set up after executing ''build_gui()''. All the six action buttons have very similar notifications, so only one is shown here:

Revision as of 14:14, 28 January 2011

Grzegorz Kraszewski


Ten artykuł w innych językach: angielski

Program SciMark2

Często poradniki i przewodniki programowania zanudzają czytelników bezużytecznymi teoretycznimi przykładami. W tym przewodniku przeportujemy na MorphOS-a konkretny program, dodając mu interfejs graficzny w MUI. Naszą ofiarą padnie SciMark 2. SciMark2 to jeden z wielu programów mierzących wydajność procesora i pamięci. Aby je zmierzyć SciMark2 przeprowadza serię testów opartych na typowych obliczeniach naukowych, takich jak szybka transformata Fouriera, dekompozycja macierzy na macierze LU, mnożenie macierzy rzadkich i tak dalej. Program został pierwotnie w języku Java w celu porównywania wydajności maszyn wirtualnych tego języka. Następnie przepisano go w języku C (a także w wielu innych językach programowania). Kod źródłowy w C jest dostępny na stronie domowej projektu.

Kod źródłowy używa wyłącznie standardowych funkcji ANSI C, więc kompiluje się "od ręki" na MorphOS-ie po uruchomieniu znajdującego się w archiwum Makefile. Trzeba jedynie zmienić linię $CC = cc na $CC = gcc, bo tę ostatnią nazwę nosi standardowy kompilator w naszym systemie. Rezultatem kompilacji jest typowa konsolowa aplikacja. Oto przykładowe wyniki działania SciMarka2 na Pegasosie 2 z procesorem G4:


Scimark cli noopt.png


Wyniki są niezbyt zachwycające. Bierze się to z faktu, że Makefile nie włącza w kompilatorze żadnych optymalizacji. Najprościej jest dodać linię $CFLAGS = -O3 pod $CC = gcc. Warto też zlinkować program z biblioteką libnix (linkowana statycznie biblioteka emulująca środowisko uniksowe, patrz Standard C and C++ Libraries) dodając -noixemul do CFLAGS i LDFLAGS. Po ponownej kompilacji i uruchomieniu wyniki ulegają znaczącej poprawie (program skompilowano kompilatorem GCC 4.4.4 z oficjalnego SDK):


Scimark cli opt.png


To doświadczenie pokazuje jak bardzo ważne jest korzystanie z optymalizacji kodu, zwłaszcza w programach wykonujących dużo obliczeń. Zoptymalizowan kod jest ponad 4 razy szybszy!

Przegląd kodu

Oryginalny kod źródłowy jest logicznie podzielony na moduły. Pięć plików: FFT.c, LU.c, MonteCarlo.c, SOR.c i SparseCompRow.c zawiera pojedyncze testy obliczeniowe. Pliki array.c i Random.c zawierają funkcje pomocnicze używane w testach. W plik Stopwatch.c z kolei znajdują się procedury pomiaru czasu. Plik scimark2.c zawiera funkcję main() i tekstowy interfejs programu.

Planowany interfejs graficzny powinien pozwalać użytkownikowi na uruchomienie każdego testu oddzielnie, albo wszystkich po kolei. Program posiada też opcję -large, która zwiększa rozmiary danych dla poszczególnych testów tak, że nie mieszczą się w pamięci podręcznej procesora. Dobrą zasadą przy portowaniu programów jest ograniczenie modyfikacji oryginalnych plików do minimum. Dzięki temu znacznie ułatwiona jest aktualizacja portu, kiedy ukaże się nowa wersja oryginału. W przypadku SciMarka wystarczy zastąpić tylko jeden plik, mianowicie scimark2.c. W zaawansowanym porcie możnaby też zastąpić Stopwatch.c kodem bezpośrednio używającym timer.device, co zwiększyłoby dokładność pomiaru czasu. To zagadnienie jednakże nie mieści się w zakresie tematycznym artykułu.

Bliższe przyjrzenie się plikowi scimark2.c ujawnia, że zawiera on obiekt Random (jest to struktura zdefiniowana w pliku Random.h), który jest używany przez wszystkie 5 testów. W oryginalnym kodzie jest on tworzony funkcją new_Random_seed() na początku programu i usuwany funkcją delete_Random() na jego końcu. Najlepszym miejscem na ten obiekt w zMUI-fikowanej wersji są dane obiektu aplikacji. Wtedy można go zainicjalizować w konstruktorze aplikacji (metoda OM_NEW()) a usunąć w destruktorze (metoda OM_DISPOSE()). Te dwie metody należy więc w klasie pochodnej od Application przeciążyć.

Projekt intrerfejsu graficznego

Scimark gui.png
Nie ma oczywiście "jedynie słusznego" projektu GUI dla SciMarka. Prosty projekt, używający ograniczonej ilości klas MUI, pokazany jest na ilustracji po lewej. Mamy tam 5 przycisków do uruchamiania poszczególnych testów i szósty do automatycznego wykonania wszystkich po kolei. Wszystkie te przyciski są obiektami klasy Text. Po prawej znajdują się gadżety wyświetlające wyniki testów. One również są klasy Text, mają jedynie inny zestaw atrybutów. Przycisk "Large Data", oczywiście również klasy Text, jest przyciskiem dwustanowym. O dziwo pasek stanu na dole nie jest klasy Text ale klasy Gauge, dzięki czemu będzie można w nim wyświetlać postęp wykonywania testów w czasie wykonywania całego zestawu. Poziome paski oddzielające pojedyncze testy od testu zbiorczego są instancjami klasy Rectangle. Do tego mamy trzy niewidoczne obiekty klasy Group. Pierwszy to grupa pionowa będąca głównym obiektem okna. Ma ona dwie podgrupy. Górna to grupa tablicowa o dwóch kolumnach, w której znajdują się przyciski testów i pola wyników. Grupa dolna, będąca grupą poziomą, zawiera przycisk "Large Data" i pasek stanu.

Najprościej zacząć tworzenie GUI kopiując po prostu przykład "HelloWorld". Nowe obiekty dodajemy wewnątrz funkcji build_gui(). Zmodyfikowany przykład jest gotowy do skompilowania i uruchomienia. Oczywiście nie jest to kompletny program, a jedynie model interfejsu graficznego.

W kodzie można zauważyć, że funkcja build_gui() nie zawiera w sobie całego kodu tworzącego interfejs. Kod dla niektórych obiektów został przeniesiony do oddzielnych funkcji wywoływanych z głównego wywołania funkcji MUI_NewObject(). Podzielenie funkcji tworzącej GUI na fragmenty ma szereg zalet:

  • Większa czytelność kodu i prostsze wprowadzanie zmian. Pojedyncze wywołanie MUI_NewObject() staje się szybko bardzo długie w miarę rozbudowy interfejsu. Edycja tak dużej funkcji rozciągającej się na kilka ekranów edytora jest niewygodna. Dodawanie i usuwanie obiektów staje się koszmarem, nawet jeżeli wcięcia w kodzie są stosowane konsewentnie. Z drugiej strony taka funkcja może mieć 10 i więcej poziomów wcięć, co również czyni ją trudną w czytaniu.
  • Zmniejszenie wielkości kodu. Zamiast powtarzać bardzo podobny kod wiele razy, na przykład przyciski różniące się jedynie etykietami, można wywołać podprogram z tekstem etykiety jako parametrem.
  • Debugowanie. Bywa, że MUI odmawia stworzenia obiektu aplikacji z powodu jakiegoś błędnego taga albo jego wartości. Jeżeli główne wywołanie MUI_NewObject(), tworzące obiekt aplikacji, jest podzielone na szereg mniejszych funkcji, łatwo wyizolować błąd wstawiając kilka Printf()-ów w tychże funkcjach.

Metody i atrybuty

Zaprojektowany właśnie intefrejs graficzny do SciMarka definiuje 6 akcji, jakie można wykonać w tym programie. Mamy pięć akcji polegających na wykonaniu pojedynczego testu, oraz szóstą, która wykonuje wszystkie testy po kolei i oblicza łączny wynik. Akcje te będą bezpośrednio odpowiadały metodom klasy utworzonej z klasy Application. GUI określa nam także jeden atrybut, związany z przyciskiem LargeData. Przypomnę, że określa on rozmiary danych dla testów. Ponieważ metody nie wymagają żadnych parametrów, nie ma potrzeby definiowania ich struktur. Jakikolwiek atrybut może być używany jako wartość początkowa konstruktora, może być ustawialny (wymaga przeciążenia metody OM_SET()), może też być odczytywalny (wymaga przeciążenia metody OM_GET()). Nasz nowy atrybut, nazwany APPA_LargeData, wymaga jedynie możliwości ustawiania. W konstruktorze możemy go domyślnie ustawić na FALSE, ponieważ na starcie programu przycisk "LargeData" jest wyłączony. Możliwość odczytu wartości atrybutu nie jest potrzebna, bo jest on odczytywany wyłącznie wenątrz klasy aplikacji, można więc bezpośrednio odwołać się do odpowiedniego pola danych obiektu.

Pisząc program warto umieszczać każdą klasę w oddzielnym pliku. Ułatwia to utrzymanie modułowości kodu, pozwala również na ukrycie danych prywatnych klasy. Pociąga to sa sobą konieczność napisania makefile, ale oryginalny kod SciMarka również składa się z kilku pilków, więc tak, czy inaczej, jest to nieuniknione. Stosując się do przedstawionych powyżej wskazówek projektowych można napisać plik nagłówkowy klasy i jej kod. Klasa w tej postaci nadal nic nie robi, po prostu zawiera puste metody akcji programu i przeciąża metody OM_SET(), OM_NEW() i OM_DISPOSE(). Pisanie takiego szkieletu klasy jest nudną mechaniczną pracą, więc można ją zwalić na komputer. W istocie, przykładowy kod został wygenerowany narzędziem ChocolateCastle. Niestety ChocolateCastle jest wciąż w wersji beta, więc kilka drobnych poprawek trzeba było wprowadzić ręcznie.

The next step in the application design is to connect methods and attributes with GUI elements using notifications. Notifications must of course be created after both source and target object are created. In the SciMark code they are just set up after executing build_gui(). All the six action buttons have very similar notifications, so only one is shown here:

DoMethod(findobj(OBJ_BUTTON_FFT, App), MUIM_Notify, MUIA_Pressed, FALSE,
 App, 1, APPM_FastFourierTransform);

The "Large Data" button has a notification setting the corresponding attribute:

DoMethod(findobj(OBJ_BUTTON_LDATA, App), MUIM_Notify, MUIA_Selected, MUIV_EveryTime,
 App, 3, MUIM_Set, APPA_LargeData, MUIV_TriggerValue);

Notified objects are accessed with dynamic search (the findobj() macro), which saves the programmer from defining global variables for all of them.

Implementing Functionality

The five methods implementing single SciMark benchmarks are very similar, so only one, running the Fast Fourier Transform has been shown:

IPTR ApplicationFastFourierTransform(Class *cl, Object *obj)
{
  struct ApplicationData *d = INST_DATA(cl, obj);
  double result;
  LONG fft_size;

  if (d->LargeData) fft_size = LG_FFT_SIZE;
  else fft_size = FFT_SIZE;

  SetAttrs(findobj(OBJ_STATUS_BAR, obj),
    MUIA_Gauge_InfoText, (LONG)"Performing Fast Fourier Transform test...",
    MUIA_Gauge_Current, 0,
  TAG_END);

  set(findobj(OBJ_RESULT_FFT, obj), MUIA_Text_Contents, "");
  set(obj, MUIA_Application_Sleep, TRUE);
  result = kernel_measureFFT(fft_size, RESOLUTION_DEFAULT, d->R);
  NewRawDoFmt("%.2f MFlops (N = %ld)", RAWFMTFUNC_STRING, d->Buf, result, fft_size);
  set(findobj(OBJ_RESULT_FFT, obj), MUIA_Text_Contents, d->Buf);
  set(obj, MUIA_Application_Sleep, FALSE);
  set(findobj(OBJ_STATUS_BAR, obj), MUIA_Gauge_InfoText, "Ready.");
  return 0;
}

The code uses dynamic object tree search for accessing MUI objects.

The method sets the benchmark data size first, based on the d->LargeData switch variable. This variable is set with the APPA_LargeData attribute, which in turn is bound to the "Large Data" button via a notification. Then the status bar progress is cleared and some text is set to inform the user what is being done. The result textfield for the benchmark is cleared as well.

The next step is to put the application in the "busy" state. It should be always done, when the application may not be responding to user input for anything longer than, let's say half a second. Setting MUIA_Application_Sleep to TRUE locks the GUI and displays the busy mouse pointer when the application window is active. Of course offloading processor intensive tasks to a subprocess is a better solution in general cases, but for a benchmark it makes little sense. A user has to wait for the benchmark result anyway before doing anything else, like starting another benchmark. The only usability problem is that a benchmark can't be stopped before it finishes. Let's leave it as is for now, for a benchmark, where the computer is expected to use all its computing power for benchmarking, a few seconds of GUI being unresponsive is not such a big problem.

The next line of code runs the benchmark, by calling kernel_measureFFT() function from the original SciMark code. After the benchmark is done, the result is formatted and displayed in the result field using NewRawDoFmt(), which is a low-level string formatting function from exec.library and with the RAWFMTFUNC_STRING constant, it works just like sprintf(). It uses a fixed buffer of 128 characters (which is much more than needed, but adds a safety margin) located in the object instance data. Unsleeping the application and setting the status bar text to "Ready." ends the method.

The APPM_AllBenchmarks() method code is longer so it is not repeated here. The method is very similar to the single benchmark method anyway. The difference is it runs all 5 tests accumulating their results in a table. It also updates the progress bar after every benchmark. Finally it calculates a mean score and displays it.


Final Port

The complete source of SciMark2 MUI port

The program may be built by running make in the source directory.